光子,会让计算机更快吗? 有科学家说:如果计算机使用光子而不是电子来传输数据,它们的性能会更好,耗电量也会更少。与光子不同,电子有质量和电荷。当它们流经金属或半导体材料时,它们被硅和金属原子散射,导致它们振动并产生热量。因此,供应给微处理器的大部分电力都被浪费了;为此科学家们正在研究一种新的硅和锗发光合金,以获得光子芯片,这将给计算机带来革命性的变化。光子,即构成光的粒子,已基本取代电子在通信网络中进行数据传输。光信号的高带宽推动了电话系统、电视广播和互联网的巨大增长,然而,光子还没有取代计算机中的电子。 所谓光子学 芯片是人类信息技术史上的一次变革性突破。从石器时代的壁画、岩画,到农业时代的竹简、活字印刷术,再到工业时代的电话、电报、电视,人类信息生成、传输、处理、存储等载体发生了多次变革。从本质上讲,芯片就是通过利用半导体材料的物理特性来实现对承载信息的微观粒子(电子或光子等)的操控,进而实现信息生成、传输、处理、存储等的一种关键技术。自19世纪末、20世纪初物理学发现电子以来,人类开辟了电子技术的新时代。通过在半导体材料上对电子进行操控,人类实现了通过电子来生成、处理和传输信息,实现了信息技术的跨越式发展。从首个电子管被制造出来,到晶体管诞生,半导体技术不断发展。 (文章内容来源于网络) 直到集成电路被发明出来,电子芯片成为现代信息技术的基石,推动人类社会进入了微电子科技时代。电子芯片诞生以来,经过六七十年的发展,围绕它已形成一个成熟、庞大的产业体系,带动了信息产业、软件行业和消费电子产业的高速发展,催生了CPU、操作系统、PC、手机、笔记本电脑等数万亿的产值以及下游互联网、人工智能等应用领域几十万亿的产值。 1979年,钱学森教授在《中国激光》上著文,首次提出光子学、光子技术和光子工业的构想,并认为以集成光路为核心的光子计算机的运算能力可以超过电子计算机百倍、千倍乃至万倍。电子学有四个基本要素,分别是作为载体的电子、作为传输介质的电缆和电路、发电机和晶体管。与之对应,在光子学中信息载体是光子,传输介质是光波波导和光纤,激光发射器好比发电机,光电调制元件相当于电子开关和电子晶体管。从发展路线来看,电是从电学开始到电子学,再到电子回路、电子集成、电子系统、电子工程,最后到电子产业。光是从光学开始到光子学、光子回路、光子集成、光子系统、光子工程,最后到光子产业。根据底层的科学逻辑可以判断,人类一定会进入微光子学时代,利用微光子技术进行元器件的大规模集成必定会实现。 为何要发展光子芯片? 在电子芯片发展已有六七十年、产业已经很成熟的情况下,为什么要发展光子芯片? 一是以电子为载体的技术发展已趋近物理极限。当下集成电路是以硅为基础材料的,硅原子的直径约为0。22纳米,当制程降至7纳米以下时,极易出现电涌和电子击穿问题,也就是已经很难完美地控制电子了。虽然代表全球最顶尖水平的台积电仍然在不断地进行3纳米及2纳米的技术研发及产能投资,但业内人士普遍认为集成电路的尺寸微缩最多到2030年就会达到物理极限,亟需寻找创新发展的出路。二是电子芯片尺寸降到极致时会出现功耗墙难题。比如,巨大的耗能压力就是计算机发展的最大技术障碍之一。虽然国内外学术界和工业界进行了大量努力,但由于CMOS半导体功耗密度已接近极限,所以必须寻找新途径、新结构、新材料。三是过去几十年中处理器的性能以每年约55的速度提升,而内存性能的提升速度约为每年10,长期累积下来,不平衡的发展速度造成了当前内存的存取速度严重滞后于处理器的计算速度,访存瓶颈导致高性能处理器难以发挥出应有的功效。大量信息存储不过来、无法计算。 四是电子芯片性能提升的同时,性价比在降低。业界普遍认为,28纳米是芯片性价比最高的尺寸。根据SEMI国际半导体产业协会的芯片主流设计成本模型图,采用FinFET工艺的5纳米芯片设计成本已是28纳米工艺设计成本的近8倍,更复杂的GAA结构的设计成本只会更高,这仅是芯片设计、制造、封装、测试中的设计环节。制造环节的晶圆代工厂的研发、建厂、购买生产设备耗费的资金会更多,比如三星在美国得克萨斯州计划新建的5纳米晶圆厂预计投资高达170亿美元。 未来光子技术将变得更加重要,随着摩尔定律濒临失效,光子技术在科技产品中的占比将逐渐增加。基于此,2016年我们提出了米70定律,认为未来光学成本将占所有科技产品成本的70。这一判断已在很多领域得到验证。例如,目前通信网络建设成本中的70是光学成本,包括光学设备和系统的采购;无人驾驶汽车公司已将70的资金投入到激光雷达等光学器件上;在显示领域,液晶面板中光学成本也占到了7080的比例。未来,智能手机和智能汽车上的创新基本都是在光学方向发力。如果说19世纪是机械的世纪,20世纪是电的世纪,那么21世纪将是光的世纪。 共同争夺光子赛道 近十年来,欧美发达国家围绕光子产业发展皆进行了系统的部署和行动。1991年美国政府便将光子学列为国家发展重点,认为光子学在国家安全与经济竞争方面有深远的意义和潜力,通信和计算机研究与发展的未来世界属于光子学领域。此后相继成立了美国光电子产业振兴会、国家光子计划产业联盟、国家光子集成制造创新研究所。2021年,为确保美国在全球光基础技术创新方面保持领先,美国国会牵头成立了国家光学与光子学核心小组,并投入巨资支持光子技术发展。此外,IBM、英特尔、思科等科技巨头也在光子芯片领域进行了广泛布局。 我国多区域已将光子产业作为最具战略性、基础性、先导性的新兴产业予以部署。北京加快布局建设光电子新型研发机构,发起成立光子硬科技投资基金。陕西率先发布追光计划,致力于打造国内首个集新型研发机构共性技术平台基金产业集群于一体的两链融合光子产业创新生态。滑向球将要到达的地方,而不是它已经在的地方。迎着智能化曙光,未来将掀起光子技术产业革命,类似于从电子工业的晶体管迈入集成电路时代的技术革命,集成光路将是半导体领域60年一遇的换道超车重要机遇。光子芯片或将成为第四次科技革命中5G、物联网、人工智能等技术和产业的基础设施,推动人类社会迈进光子时代。 光电子芯片 不久之前,来自欧洲的科学家在《自然》期刊上发表了一种新型的硅和锗合金,它具有光学活性。荷兰埃因霍温理工大学的物理学家乔斯哈弗科特说:这是第一步,我们证明了这种材料非常适合发光,而且它与硅兼容。下一步是开发一种硅兼容激光器,它将被集成到电子电路中,作为光电子芯片的光源,这是由欧盟FET计划支持的SILAS项目最终目标。 (文章内容来源于网络) 中国的光子芯片 1月7日,《激光与光子学评论》以期刊正封面的形式在线发表了来自兰州大学物理科学与技术学院教授田永辉团队的文章《基于氮化硅薄膜铌酸锂异质集成平台的模式与偏振复用》,该工作有望助力高速、大容量数据通信,并为薄膜铌酸锂平台上有源及无源器件全集成的光子芯片提供新的解决方案。 光学复用器是集成光子回路中重要的无源组件之一,它能为光互连、光计算和光传感提供显著的多路并行性,并且已经成为了商用光学收发器中必不可少的重要部件。其中,光学模式和偏振复用由于只需要一路单波长的激光源就可以成倍提升光互连的通信容量,相对于波分复用大大降低了成本和工艺复杂度,在其他的材料平台上获得了广泛的研究。在薄膜铌酸锂平台上实现模式和偏振复用,可以与高速的电光调制器进行单片集成,构建大容量、低功耗的集成光子回路,对于下一阶段的高速光通信是非常具有吸引力的。 (原文地址:https:news。sciencenet。cnhtmlnews20221472315。shtm) 田永辉课题组与澳大利亚皇家墨尔本理工大学教授阿南米切尔课题组及上海交通大学教授苏翼凯课题组合作,在薄膜铌酸锂晶圆的表面沉积了一层氮化硅薄膜,通过成熟的CMOS兼容工艺刻蚀氮化硅层可以得到氮化硅铌酸锂异质脊型波导,解决了直接刻蚀铌酸锂薄膜带来的波导侧壁角度等问题,并基于该波导实现了高性能的模式和偏振复用器件。 由于氮化硅材料拥有略低于铌酸锂材料的折射率,因此大部分光场仍限制在铌酸锂中,这样的性质有利于在同一块衬底上利用铌酸锂优异的材料属性实现电光调制器和光学非线性器件。同时,氮化硅材料还拥有与铌酸锂相似的光学透明窗口,有助于实现超宽带器件。基于前期的研究工作,团队研究人员通过仿真计算得到了铌酸锂不同晶体学轴的光学模式表现,发现并率先提出了该平台上实现高性能模式和偏振复用的方案:在晶体学Z轴方向实现模式复用,晶体学Y轴方向实现偏振复用。 器件的静态测试结果显示,在覆盖C波段的宽波长范围内,模式复用解复用器的插入损耗低于1。46分贝,模间串扰低于13。03分贝,偏振旋转分束器的插入损耗低于1。49分贝,偏振消光比大于17。75分贝。进一步地,研究人员还对器件进行了40Gbps数据传输实验,得到的眼图清晰张开,误码率测试展示了较低的功率损失,证明所制备的器件具有良好的数据处理能力。 芯片焊接的保护加持 芯片的焊接是指半导体芯片与载体(封装壳体或基片)形成牢固的、传导性或绝缘性连接的技巧。焊接层除了为器件提供机械连接和电连接外,还须为器件提供良好的散热通道。BUT,因芯片焊接(粘贴)不良造成的失效也越来越引起了人们的重视,因为这种失效往往是致命的,不可逆的。而在各种失效情况下,有多种基于环境所造成的问题,是最不容忽视的。 芯片背面氧化 器件生产过程中,焊接前往往先在芯片背面蒸金。在AuSi共晶温度下,Si会穿透金层而氧化生成SiO2,这层SiO2会使焊接浸润不均匀,导致焊接强度下降。即便在室温下,硅原子也会通过晶粒间的互扩散缓慢移动到金层表面。因此,在焊接时保护气体N2必须保证足够的流量,最好加入部分H2进行还原。芯片的保存也应引起足够的重视,不仅要关注环境的温湿度,还应考虑到其将来的可焊性,对于长期不用的芯片应放置在氮气柜中保存。 基片清洁度差 基片被沾污、有部分油渍或氧化会严重影响焊接面的浸润性。这种沾污在焊接过程中是较简单观察到的,这时必须对基片进行再处理。要解决芯片微焊接不良问题,必须明白不同技巧的机理,逐一分析各种失效模式,及时发现影响焊接(粘贴)质量的不利因素,同时严格生产过程中的检验,加强制造环境管理,才能有效地避免因芯片焊接不良对器件可靠性造成的潜在危害。 所以在芯片制造的过程中 如果能配合手套箱进行生产环境保护 就能有效的避免这些问题 关注中国科技 关注中国芯片发展 提供最好的芯片焊接保护 伊特克斯手套箱