纠纷奇闻社交美文家庭
投稿投诉
家庭城市
爱好生活
创业男女
能力餐饮
美文职业
心理周易
母婴奇趣
两性技能
社交传统
新闻范文
工作个人
思考社会
作文职场
家居中考
兴趣安全
解密魅力
奇闻笑话
写作笔记
阅读企业
饮食时事
纠纷案例
初中历史
说说童话
乐趣治疗

用细胞制造的生物混合机器人机器人领域的下一个前沿

1月17日 辞凤阙投稿
  导语
  说到机器人,我们头脑中的画面大概是以金属塑料为材料,模仿人类或其他生物的行为。随着生物科学的进步,生物的细胞和组织也被用来当作机器人设计材料,将生物材料融合进机器人,也就是生物混合机器人(biohybridrobots)。生物混合机器人可以在多尺度下作为可控的机器进行工作,小到亚细胞级,大到生物体级别。可是这种混合机器人面临一个严重的考验:如何让融合的生物材料稳定生长、持久耐受?这要求对于生物材料的供能必不可少,其中微流控技术就可以在未来改善组织灌注,组织生长,实现传感、处理的精确控制模式。这篇今年8月发表于PNAS的文章为我们详细解读了微流控技术为生物混合机器人领域带来的各种可能突破
  研究领域:生物混合机器人,微流控技术
  论文题目:
  Willmicrofluidicsenablefunctionallyintegratedbiohybridrobots?
  论文来源:
  https:www。pnas。orgdoi10。1073pnas。2200741119
  1。生物混合机器人和微流控技术
  曾几何时,机器和人的结合只出现在科幻小说和电影中,而如今,从心脏起搏器到机器义肢再到脑机接口,人机交互早已不是新鲜事。可是反过来呢?在机器人身上配备人体组织或细胞,让机器人更加接近人类,那会是怎样的场景?
  一般意义上的机器人我们称之为Cyborg,也就是《异形》系列中的生化人,它们是完全冰冷的机械个体;而与生物结构相结合,则称之为Biohybrid,也就是这里所提到的生物混合机器人(biohybridrobots),它们具有更多的生命性。现如今,科学家们通过不懈努力,在微观到宏观层面上,将机器人与细胞结合,创造出能够进行各种工作的生物混合机器人。
  对于生物混合机器人来说,生物组织需要生存,组织液体的灌注是必须的,所以对于生物混合机器人领域,核心技术之一就是如何精细控制灌注生物组织的液体即微流控技术(microfluidics)。
  图1:各个尺度下的生物混合系统。
  亚细胞生物混合系统是由动态分子的相互作用和酶的催化活性驱动的。微型机器人可以从单个活动细胞(例如,细菌,藻类,原生动物,精子细胞)中获得。可收缩细胞能在体外组装,形成由功能性肌肉组织组成的毫微米尺度下的驱动器。组织可以从动物身上移植,并集成到机器中,以实现各种功能(例如,驱动或听觉感知)。最后,多细胞生物既可以用来指挥机器,也可以被集成的人工装置控制。
  微流控技术是流体力学和微机电系统技术的结合,对基础细胞生物学、生物分子分析等多个研究领域做出了巨大贡献。微流控技术可以通过使用微气动系统(如液体泵、气体驱动阀)和微流体结构,分别引导(芯片)片外和片上流体(从纳米到毫米体积的流体)。通过理解和控制微观系统中的流体行为,我们可以在保留或改进某些原始特征的同时,减少复杂宏观系统的规模。这种微型化的潜力已经引起了其他研究领域(如机器人和组织工程)科学家的注意。所以微流控在帮助精细控制灌注生物混合机器人的生物组织的液体方面,有着令人十分憧憬的发展前景。
  这篇文章则描述了如何将活组织与微流控装置结合,以及从这种结合中获得的好处,特别是在组织制造、发展和功能控制方面。文章同时强调微流控技术在支持大组织灌注和血管化方面的影响力,以及对生物混合机器人的功能集成组织的影响。
  科学家们对生物混合机器人越来越好奇,努力解锁细胞的潜力,以实现更高性能的机器。活细胞在传感、控制和电源供应方面已经显示出实用价值,特别是机器人的驱动方面。在以下段落中,作者简要回顾了使用细胞驱动和其他功能的历史里程碑,同时描述了最有希望的改进方向。
  2。由细胞实现的生物混合机器人
  2。1细胞用作驱动力
  2005年,研究者将单个心肌细胞发育成肌束后与硅制微机械结构进行集成,用作力传导和运动系统。从那时起,便有了各种基于收缩肌细胞的生物驱动器,来执行各种运动功能。采用功能性的3D构象技术,可以进行较为复杂的运动任务,例如抓、走、游泳,均具有较高的空间和时间控制能力〔2,3〕。
  基于收缩肌细胞的生物驱动器具有很多独特的特性,比如,无声操作、柔软的手感、生物可降解、自愈能力,以及采用能量密集、廉价和环保的葡萄糖作为燃料〔2,3〕。单个骨骼肌管和心肌细胞产生的收缩力分别为约1N和10N,同时它们可以在微米尺度下产生可检测的力,相对于现有最小的传统驱动器(压电驱动器)只能在1mm的尺度下有效缩放〔2,3〕。所以这种生物驱动器在两种尺度下都具有独特的潜力:一方面,基于收缩肌细胞的微观生物驱动器可以在小型生物医学机器人中应用;另一方面,宏观的生物驱动器将使机器人具有栩栩如生的动作、自我修复和柔软的手感,以便与人类和其他物种进行亲密接触和互动。
  过去十年,体外制造生物驱动器方面取得了相当大的进展,但是目前基于工程肌肉组织的生物驱动器的性能还是远不如原生肌肉以及其它任何可用的驱动技术。合成驱动器的体积从0。1cm30。1m3不等,产生的力大约在102105N之间,这比目前的生物驱动器的力高出了多个数量级(大约在106103N之间)。此外,长期保持较低的质量功率比有望提高生物驱动器的长期性能,但是工程肌肉组织仍然存在较差的中期和长期功能表现,这是由于细胞活力的衰减和结构体的体外稳定性变差。
  针对上述存在的问题,作者认为可以考虑改进以下几个方面:一、肌肉组织的体外制造需要更加高效、仿生、可控。在这种情况下,肌肉细胞的基因工程可能可以通过调节细胞骨架和收缩相关蛋白的表达来增强其收缩力(如肌动蛋白、肌凝蛋白、肌钙蛋白),以及肌源性分化和肌肉组织发育的调节因子。二、最大限度地将力从收缩单元传递到骨架的界面来减少合成骨架结构和肌肉组织之间的有限相干性导致的力的分散。三、为了扩大其操作的多功能性,生物驱动器需要能够支持细胞在实验室外长期存活。四、基于多尺度和多物理模拟的先进建模可以帮助快速优化生物驱动器的性能。
  2。2细胞用作传感、控制和电池
  细胞可以感知和处理外部刺激,也可以有效地从环境中的营养物质中提取化学能,并将其转化为机械能。细菌、多细胞生物的特化细胞可以用来实现机器人的传感、控制和供电功能〔3235〕。
  关于化学生物传感器,感知机械刺激的生物混合技术也已经成功制造出了专门用于触觉或者听觉感知的细胞〔16,36〕。某些细胞或者有机体的光学反应则为生物视觉和机器人控制开辟了前景。在千禧年初,由活细胞和工程材料组成的视网膜假体开始了恢复视力的研究〔4042〕。光遗传基因组修饰使细胞具有光敏性,这种后天的、非自然的能力可被利用来控制细胞的固有功能(例如,神经元和肌肉细胞的电化学信号或物理收缩)〔37,43〕。十多年前,人类和其他物种的神经元已经被培养在人造芯片上,以驱动机器人运动或执行其他任务功能,而最近,关于机器人生物控制的研究集中在使用神经元调节肌肉驱动器的收缩〔4749〕。
  细胞的另一个应用涉及生物电的产生。将自发跳动的心肌细胞与通过压电效应产生电压的材料连接,可以产生电能,并用于为微电子设备供电〔50,51〕。另外,基于全细胞的光合生物混合系统可以调节可持续的太阳能到化学能的转化(例如,光促进二氧化碳减少和生物氢生产),可以用于能源生产和存储〔52,53〕。
  3。微流控技术:机器人和组织工程之间的桥梁
  3。1用于机器人的微流体
  微流体可以和机器人等动力系统进行有效的协同工作。在软体机器人中,驱动常常是由流体压力驱动的,同时由于软体机器人中的材料变形通常是由于流体压力引起,所以微流控技术有助于实现对主动驱动精细控制。关于机器人技术和微流控之间的界面的出版物很少。这种研究的稀缺是由于软机器人是大约10年前出现的一门年轻学科,而微流体学则在过去20年里不断发展〔5659〕。
  3。2用于组织工程的微流体
  在许多含有细胞的工程应用中都离不开微流体的应用。所以微流控技术在细胞过程(如生长、老化)以及微环境研究中非常有用。近年来,微流控技术和组织过程技术日益融合,这项技术能够让我们在微米到毫米大小的通道中进行微流体的灌注和流动。
  微流体是许多含有细胞的应用的基础。特别是,微流控技术在细胞过程(如生长、老化)、特性(如粘附、束缚)和微环境的研究中非常有用〔6063〕。近年来,微流体技术与组织工程技术日益融合。微流体允许我们在微米到毫米大小的通道中进行流体灌注和流动;在一个系统中培养多种细胞类型;优化生化梯度;并通过机械力刺激细胞〔64,65〕。未来,微流体将进一步促进组织工程,使科学家能够复制和控制细胞微环境中的条件,并利用于新兴的类器官领域。最后,微流控技术可以让我们培养大型组织结构,包括构建模仿自然组织血管化的可灌注通道系统。微流控技术可以通过在通道内精细施加流体流动来精确地分布流体压力。可以设想,在大体积组织中掌握流体微动力学将确保对细胞存活的精细控制,从而实现体外长期的生命活力〔6669〕。
  3。3微流控技术应用在生物混合机器人中的潜力
  图2中,作者向我们展示了微流控技术在生物混合机器人中的应用潜力组织工程和机器人的结合。虽然目前大多数生物混合机器人的研究都集中在生物驱动方面,但对其它生物功能的兴趣在不断增加,最近关于环境感知和运动控制的文章〔16,18,19,47〕证明了这一点。
  微流体平台在细胞培养方面的敏感性能够促进特定类型的细胞(如神经细胞)和肌肉组织进行融合,从而赋予生物驱动相关功能(如运动控制)。流控技术还能使我们安全地操作脆弱的组织单元,在大规模生产过程中从形态上控制它们的形成。
  在微流控芯片中可以将细胞和其它控件连接起来。例如,通过芯片,细胞可以在机器人中实现例如水污染检测等实际应用。在这种配置中,细胞可以暴露在环境液体中,然后进行分析。细胞活力与已知或未知污染物的存在相关联,然后通过转导信号(通常是阻抗或基于色谱的响应),这样就允许研究人员评估水样的质量〔72〕。
  在最近的研究中,蝗虫的鼓室器官被用作听觉传感器来控制机器人的运动,提取的组织包括完整的听神经,它能够记录由声音触发的神经活动〔16〕。这种声学生物传感器由机器人中的微流控芯片实现,该芯片配有电极,将听神经的电生理反应传递给机器人,微流控芯片提供了一个腔室来保持生物传感器的活性并执行电生理记录,证明了机器人内部复杂组织的可集成性。不久,基于细胞对机械波和负载的理解,微流控可能会解锁听觉和触觉感知的技术实现。重要的是,下一代微流体生物传感器可以不用再直接使用从动物身上提取的预制组织,而是使用细胞聚集体或是通过自下而上的组织工程构建的组织。通过这种方式,感觉细胞可以根据预先设计的图案,更好地与微芯片的组件相结合。因此,通过微流控芯片和生物制造技术,微流控技术将提高收缩组织的性能,并使生物混合机器人的新形式和应用成为可能。
  生物混合机器人的一个未来期望是扩大生物组件,以实现具有高能量转换效率的大规模机器人。基于微流控的微生物生理学可能使大型、耐用和自主的生物机器成为可能。在这种情况下,微流控能提供足够的组织灌注,以有效地分配氧气和营养到大尺寸组织的细胞中。此外,也可以开发便携式微流控系统,它能够让细胞在移动机器人中生存。微流控技术将如何以及在多大程度上改进生物混合机器人还有待观察,它可能先从改进细胞组装开始,然后再涉及到更复杂的机器人生物模块的实现。
  图2:微流控技术在生物混合机器人中的可能贡献。
  微流控生物混合机器人将结合不同类型的细胞,如肌肉和神经细胞。精细的神经支配网络将使在多个阵列中选择性控制特定的生物驱动器成为可能。微流控技术可以调节细胞微环境条件和微制造细胞载生物材料。这些应用将孕育越来越多用途和性能的生物混合机器人。最后,微流体组织灌注和生物反应器系统将产生更大的生物混合体,并具有持久和自主的功能。
  4。挑战和未来展望
  生物混合机器人技术还处于起步阶段,还有很多领域有待探索,还有很多挑战有待解决。要将生物混合体转化为能够在现实环境中运行的平台,就必须解决细胞寿命、组织制造和机器人功能方面的几个挑战。
  其中一个主要问题是,生命材料需要精确的环境条件才能生存,特别是,细胞环境应该能够有效地进行生化和气体交换。精确控制流体行为将有可能在不同水平上推进生物混合机器人技术。精确的微流体调节将促进生物混合系统的构建和发展。微流控将允许我们生成可组装的基础模块,作为更复杂和仿生生物的基础。
  其次,微流控平台将使我们能够刺激细胞,以增强生物驱动器的组织生长。微流控技术更重要的功能是能够进行有效的组织灌注。高效的灌注将为宏观组织构建铺平道路,这不仅会给生物混合机器人带来革命,而且会对整个组织工程领域产生巨大的影响。
  梁栋栋作者
  梁金审校
  邓一雪编辑
  商务合作及投稿转载swarmaswarma。org
  搜索公众号:集智俱乐部
  加入没有围墙的研究所
  让苹果砸得更猛烈些吧!

设计团队分享芮尔小型重做方向侧重上马下马设定LOL官网更新《开发者说:中型更新与镕铁少女芮尔》一文,分享了芮尔的小型重做方向以及妮蔻、艾翁将迎来小型重做的消息。《英雄联盟》的玩家们大家好。我是召唤师峡谷团队(不过大……无人机周报华为最新飞行器专利首款正向设计大型无人机行业动态扩大内需纲要发布支持无人系统技术应用据12月14日晚新闻联播及中国政府网消息,中共中央、国务院印发了《扩大内需战略规划纲要(20222035年)》,明确要求……两次设立的江孜地区若还在,改为地级江孜市之后的她是什么段位呢江孜县城来源梅林日喀则市因世界第一高峰珠穆朗玛峰在境内的定日县而别具风格,作为西藏的第二大城市,她的面积达到了17。924万平方公里,规模与广东面积相当并超过了江西、山东……人生不易,做自己,靠自己人生,总有一段路要一个人走,总有一些事要一个人扛,也总有一份孤独,需要自己一个人去承受。所以,活着,不要碰到一点压力,就把自己变成不堪重负的样子,不要碰到一点不确定,就把……17周试管双胞胎先兆流产剩一胎,136天后再次分娩,顺利出生8月5日深夜,一声新生儿的啼哭,在四川省妇幼保健院产房响起。和其他新生儿相比,这声啼哭,更显得来之不易。37岁的王丽(化名)婚后多年未孕,2021年底,通过试管婴儿技术成……三国杀2021阴间武将总结,杨彪杜预神郭嘉,你最讨厌哪一个?2021年快要结束了,三国杀今年新出的阴间武将,大概有这么一些。新杀许劭,肉身化圣的神左慈。阴间里最好玩的一个。策划亲自操刀,替他优化了技能池,还给他三选一,无法针对的六……世态炎凉,老了就养条狗吧人一过了五十,不管你是被动退休,生意不好做,实体无法维系,总之当你被社会抛弃静止下来的时候,就不要想太多了,接受现实吧。等米下锅的,去找份保安的工作,委屈下自己,检讨一下年青时……7。玉溪新平哀牢山很早就听说过哀牢山这个地方了,感觉上就是神秘自然、风光秀丽的地方。后看地图得知,哀牢山是一个西北东南走向的山脉,自然和人文景观密布。以前一直没有去,到去年听好几个人讲新平嘎洒,……用细胞制造的生物混合机器人机器人领域的下一个前沿导语说到机器人,我们头脑中的画面大概是以金属塑料为材料,模仿人类或其他生物的行为。随着生物科学的进步,生物的细胞和组织也被用来当作机器人设计材料,将生物材料融合进机器人,……气温飙升至15。2摄氏度格陵兰岛创3月同期高温纪录位于北极圈附近的格陵兰岛本周气温飙升,格陵兰岛首府努克的气温比同期高出17至28摄氏度,达到15。2摄氏度,创同期有史以来的最高气温。研究人员表示,这么早就出现变暖的天气……格局变大了,人生就顺了一位智者曾说:视野受限,境界就受限,境界受限,格局就受限,格局受限,人生就受限。一个人的格局有多大,他人生的舞台就有多大。01有格局的人,方能坚定信念苏轼曾说……6000万,利物浦续约被拒,创纪录中场不开心,球迷赶紧走凯塔暂停和利物浦的续约谈判。利物浦8号凯塔,2014年加盟萨尔茨堡进入红牛系,2016年顺利过渡到莱比锡红牛,此后球员在德甲大放异彩。克洛普的职业生涯起步于德国,自……
得失看淡,聚散随缘得失,天注定;聚散不由人。世间,天气说变就变,关系说淡就淡,感情说散就散,现实的生活中,谁会陪谁到永远,谁又会把谁放心上,别总说来日方长,这世上,挥手之间都是人走茶凉。……秋季吃柿子,养胃又养肺!但润肺降逆理气和胃的宝贝,却被你扔了养胃长夏转入秋季,暑气逐渐消退,秋燥开始来袭。在这个转折的时节,很多中老年人的肠胃消化却出现了一些问题,胃胀、胃满,反酸嗳气等,非常痛苦。这是因为胃的降逆功能出现了问题,……图这三款华为笔记本电脑性价比非常的高华为现在不仅在手机上做得出色,打算在电脑市场上也大干一场。前段时间,华为就在德国发布了三款笔记本,这三款不仅外观令人惊艳,整体设计的很精致,配置也很高。华为在手机市场已经……演员巩汉林某足球队收入千万不进球给国人丢脸提高劳模收入演员巩汉林:某足球队收入千万不进球给国人丢脸提高劳模收入演员巩汉林:有演员收入几千万、上亿还在偷税提高劳模收入据中新网、九派、人民政协报、观察者网、zaker新闻报……冻肉如何快速解冻?30年老厨教你一招,简单快速,5分钟就搞定生活没有彩排,美食没有美颜。大家好,今天给大家分享一道生活小技巧。在我们日常生活中,我们冻猪肉家家户户冰箱里面都存放的有不少吧,特别是在这几天过年的这种时候,更是不在话下。今天……图云台山在哪备受旅客关注浩荡水流更是一大特色说起云台山,大家比较关注的就是这里的地理位置。云台山位于四川省的东北面,近几年来吸引了不少游客的眼球。在这里,就简单给大家介绍一下云台山的风景。随着生活水平的节节提升,旅……又一场乒乓球大赛来了,看点有哪些?乒乓球迷不容错过的乒乓赛事看点1:赛事简介及上届胜出者名单乒乓球全国锦标赛每年举办一届。国内各路高手云集,难度被乒乓球迷们戏称超过世界大赛!比赛设置:男单、女单、混双、男双、女双、男团、女团……图上海太阳岛度假村景色秀美的旅游之所太阳岛度假村位于上海青浦朱家角的泖河上,从延安路高架经沪青平高速公路(A9)到太阳岛仅需45分钟车程,环岛一周达10公里。度假温泉别墅,环境优雅,鸟语花香。在大上海,那里……班主任不上幼小衔接,36岁坚持做一件事,零基础的孩子才优秀大家好,我是酒窝姐马上放暑假了,我家老二即将告别幼儿园迈入小学,前几天去接孩子放学的时候,经常和儿子一起玩的小朋友的妈妈问我:暑假期间,你给孩子找好幼小衔接班了吗?……图崆峒山地质公园避暑养生好去处登高望远,放假有什么好去处呢?这里给大家推荐避暑养生崆峒山,堪称西来第一山。崆峒山位于甘肃省平凉市城西12公里处,东瞰西安,西接兰州,南邻宝鸡,北抵银川。崆峒山是甘肃的自……图摩托罗拉刀锋重现高级工业设计十年磨一剑摩托罗拉在早年间设计出了惊世骇俗的刀锋v3,从此专心设计一发不可收拾,与至于当时的摩托罗拉没有能跟上第一批转型的脚步。而现在,不忘初心重新发力。摩托罗拉在功能机时代就已经……给想搞钱的女生,10个大胆的建议我全部的野心,不过自由一生文:小月亮排版:月亮巷路遥在《平凡的世界》中说:钱是好东西,它能使人不再心慌,并且叫人产生自信心。大概是因为来自社会最底层,真正的穷……
友情链接:中准网聚热点快百科快传网快生活快软网快好知文好找美丽时装彩妆资讯历史明星乐活安卓数码常识驾车健康苹果问答网络发型电视车载室内电影游戏科学音乐整形