四:黎曼猜想 黎曼猜想由德国数学家波恩哈德黎曼于1859年提出。它是数学中一个重要而又著名的未解决的问题(猜想界皇冠)。多年来它吸引了许多出色的数学家为之绞尽脑汁。1901年HelgevonKoch指出,黎曼猜想与强条件的素数定理等价。现在已经验证了最初的1500000000个素数对这个定理都成立。但是是否所有的解对此定理都成立,至今尚无人给出证明。黎曼猜想所以被认为是当代数学中一个重要的问题,主要是因为很多深入和重要的数学和物理结果都能在它成立的大前提下被证明。大部分数学家也相信黎曼猜想是正确的(约翰恩瑟李特尔伍德与塞尔伯格曾提出怀疑。塞尔伯格于晚年部分改变了他的怀疑立场。在1989年的一篇论文中,他猜测黎曼猜想对更广泛的一类函数也应当成立。)克雷数学研究所设立了1000000美元的奖金给予第一个得出正确证明的人。 历史研究 黎曼1859年在他的论文中提及了这个著名的猜想,但它并非该论文的中心目的,他也没有试图给出证明。黎曼知道函数的不平凡零点对称地分布在直线sit上,以及他知道它所有的不平凡零点一定位于区域0Re(s)1中。1896年,雅克阿达马和CharlesJeandelaVallePoussin分别独立地证明了在直线Re(s)1上没有零点。连同了黎曼对于不非凡零点已经证明了的其他特性,这显示了所有不平凡零点一定处于区域0Re(s)1上。这是素数定理第一个完整证明中很关键的一步。1900年,大卫希尔伯特将黎曼猜想包括在他著名的23条问题中,与哥德巴赫猜想一起组成了希尔伯特名单上的第8号问题。同时黎曼猜想也是希尔伯特问题中唯一一个被收入克雷数学研究所的千禧年大奖数学难题的。希尔伯特曾说,如果他在沉睡1000年后醒来,他将问的第一个问题便是:黎曼猜想得到证明了吗?〔1〕1914年,高德菲哈罗德哈代证明了有无限个零点在直线Re(s)上。然而仍然有可能有无限个不平凡零点位于其它地方(而且有可能是最主要的零点)。后来哈代与约翰恩瑟李特尔伍德在1921年及塞尔伯格在1942年的工作(临界线定理)也就是计算零点在临界线Re(s)上的平均密度。近年来的工作主要集中于清楚的计算大量零点的位置(希望借此能找到一个反例)以及对处于临界线以外零点数目的比例置一上界(希望能把上界降至零)。 五:杨米尔斯存在性与质量间隙 杨米尔斯规范场论与质量间隙是理论物理中规范场论的一道基础问题,必须在数学上严格证明杨米尔斯场论存在(即需符合构造性量子场论的标准),亦要证明它们有质量间隙,即模型所预测的最轻单粒子态为正质量。2000年,克雷数学研究所悬赏各一百万元的数学七大千禧年难题,其中一道题为杨米尔斯规范场论同质量间隙。 背景我们所知多数非凡(nontrivial)即有相互作用的4维量子场论皆有cutoffscale的有效场论。因多数模型的beta函数是正的,似乎大多数这类模型皆有一支Landaupole,因我们完全不清楚它们有没有非凡紫外定点。故此,若每一scale上皆定义有这样的量子场论〔注1〕,它只可能为单纯的自由场论。然而,有不可交换结构群的杨米尔斯理论(无夸克)例外。它有一种性质称为渐近自由,指它有一单纯的紫外定点。因此,我们可以寄望它成为非凡的构造性(constructive)四维量子场模型。不交换群YangMills理论的色禁闭性已有符合理论物理严谨性的证明,但未有符合数理物理严谨性的证明〔注3〕。基本上,换言之,过了QCD尺度(或者这里应称为禁闭尺度,因为无夸克),那些色荷粒子被色动力学的“流管”连着,所以粒子间有线性势(“弦”张力x长度)。所以胶子之类自由贺粒子不可能存在。若没有这些禁闭效应,我们应见到零质量的胶子;但因它们被禁闭,我们只见到不带色荷的胶子束绑态胶波。凡胶波皆质量,所以我们期望质量间隙。格点规范场论的结果令不少工作者相信,这个模型真的有禁闭现象(由Wilson圈的真空期望值的下降的“面积规律”(arealaw)看出),但这项结果还没有符合数学的严慬性。